This section assumes that you have access to a graphing calculator or some other graphing program.
Let's suppose you want to solve the inequality
![]() |
A given x will solve the inequality if f(x)<0, i.e., if f(x) is below the x-axis. Thus the set of our solutions is the part of the x-axis indicated below in red, the interval (-1,1):
![]() |
If we want to see the solutions of the inequality
![]() |
Note the pivotal role played by the "yellow dots", the x-intercepts of f(x).
f(x) can only change its sign by passing through an x-intercept, i.e., a solution of f(x)=0 will always separate parts of the graph of f(x) above the x-axis from parts below the x-axis. This property of polynomials is called the Intermediate Value Property of polynomials; your teacher might also refer to this property as continuity.
Let us consider another example: Solve the inequality
![]() |
A given x will solve the inequality if
,
i.e., if f(x) is above the x-axis. Thus the set of our solutions is the part of the x-axis indicated below in blue, the union of the following three intervals:
![]() |
The (finite) endpoints are included since at these points f(x)=0 and so these x's are included in our quest of finding the solutions of
.
Our answer is approximate, the endpoints of the intervals were found by inspection; you can usually obtain better estimates for the endpoints by using a numerical solver to find the solutions of f(x)=0. In fact, as you will learn in the next section, the precise endpoints of the intervals are
,
-1, 0 and
.
Two more caveats: The method will only work, if your graphing window contains all x-intercepts. Here is a rather simple-minded example to illustrate the point: Suppose you want to solve the inequality
![]() |
To find the correct answer, the interval (0,10), your graphing window has to include the second x-intercept at x=10:
![]() |
Here is another danger: Consider the three inequalities
,
and
.
If you do not zoom in rather drastically, all three graphs look about the same:
![]() |
Only zooming in reveals that the solutions to the three inequalities show a rather different behavior. The first inequality has a single solution, x=0. (This also illustrates the fact that a function f(x) does not always change sign at points where f(x)=0.)
![]() |
The second inequality,
,
has as its solutions the interval
[-0.01,0.01]:
![]() |
The third inequality,
,
has no solutions:
![]() |
1998-06-11